

Correction to "Ion Correlation-Induced Phase Separation in Polyelectrolyte Blends"

Charles E. Sing, Jos W. Zwanikken, and Monica Olvera de la Cruz*

ACS Macro Lett. 2013, 2 (11), 1042-1046. DOI: 10.1021/mz400511r

In our recent letter "Ion Correlation-Induced Phase Separation in Polyelectrolyte Blends" (ACS Macro Lett. **2013**, 2, 1042– 1046), we miscalculated the phase diagram in Figure 3.¹ Instead of calculating the field contribution $f_q \delta_A(\ln(\rho_+) + 2\mu_{\rm CORR})$ as described both in this work and in the original description of the method,^{1,2} the phase diagram was incorrectly calculated using a field contribution $f_q \delta_A(\ln(\rho_+) + \mu_{\rm CORR})$ (the factor of 2 is missing in front of the $\mu_{\rm CORR}$). This error does not change the conclusions of the affected paper; however, the phase boundaries in Figure 3 of the original article¹ are shifted, and the corrected phase diagram is shown in Figure 1:

Figure 1. Phase diagram on the $\chi N - \phi_A$ plane from a number of charge-neutral polymer blends. The mean-field Flory–Huggins result for a symmetric blend (black) has a theoretically predicted $\chi_{critical}N = 2.0$. Above this binodal, there is a coexistence regime where phase separation occurs. The inclusion of *only* the ideal gas contribution of the counterions ($\mu_{CORR} = 0$) results in the red curve, which demonstrates strongly suppressed phase separation such that $\chi_{critical}N \approx 5-6$. Inclusion of correlations with a strength denoted by Γ enhances phase separation at large Γ in contrast to the ideal gas result. At large values of $\Gamma \geq 11.6$ phase separation is observed even at $\chi N = 0$ indicating that charge correlations alone can drive phase separation. $f_q = 0.1$ and N = 40, a = 3.0 Å for $\Gamma = 4.6$, 11.6, a = 2.5 Å for $\Gamma = 17.1$, 22.2, and a = 2.0 Å for $\Gamma = 27.8$.

REFERENCES

(1) Sing, C. E.; Zwanikken, J. W.; Olvera de la Cruz, M. ACS Macro Lett. 2013, 2, 1042–1046.

(2) Sing, C. E.; Zwanikken, J. W.; Olvera de la Cruz, M. Phys. Rev. Lett. 2013, 111, 168303.

Received: June 1, 2014 **Published:** June 6, 2014

